A Comprehensive Environmental Assessment Approach to Making Informed Decisions about Engineered Nanoparticles

David Johnson, Chris Griggs, Jeff Steevens

Environmental Laboratory

US Army Engineer Research &

Development Center

Vicksburg, MS, USA

US Army Corps of Engineers
BUILDING STRONG®

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, includion of information. Send comments is arters Services, Directorate for Inforty other provision of law, no person to	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE MAY 2011	2. DEDODE TYPE			3. DATES COVERED 00-00-2011 to 00-00-2011		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
A Comprehensive Environmental Assessment Approach to Making Informed Decisions about Engineered Nanoparticles				5b. GRANT NUMBER		
imormed Decisions about Engineered Nanoparticles				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180-6199 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NOTES Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 9-12 May 2011 in New Orleans, LA.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 30	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

DoD Materiel Development and Costs

Phase graphics: Robert Cramwell, Sandia National Laboratories, *Ground Vehicle Reliability*, DoD Maintenance Symposium, November 13-16, 2007.

Challenges:

- Regulations (e.g., EU REACH)
- Limited EHS information
- Limited field data & exposure information
- •Cost
- Time

 It is estimated that <u>over 85%</u> of the costs of technology occur <u>after</u> systems acquisition

Comprehensive Environmental Assessment (CEA)

Known Knowns

Comprehensive Environmental Assessment Life Cycle Environmental Fate & Exposure -**Effects Pathways** Stages **Transport** Dose Feedstocks Manufacture **Primary** Air Biota contaminants **Ecosystems** Distribution Water Human Storage Secondary Human Health populations Soil contaminants Use Disposal Analytical methods development and application

Known Unknowns

Adapted from Davis, 2007

Unknown Unknowns

CEA: Lessons Learned with fuel oxygenate MBTE

- (1) A multimedia environmental perspective built on a product life cycle framework is essential.
- (2) A by-product may be more problematic than the primary substance.
- (3) Human health is not the only issue of concern.
- (4) Use caution in generalizing from limited empirical data.
- (5) The public deserves to be well-informed.
- (6) Everything has trade-offs: some may be acceptable, some may not.
- (7) Even with limited information, technical experts may be able to anticipate risks.
- (8) An adaptive risk management strategy is critically important.

Adapted from Davis, 2007

ERDC CEA Case Study: Engineered Aluminum Nanoparticles

Applying CEA approach to nanotechnology in the R&D Phase

Known Knowns

- Lack of mature industries
- Data lacking or evolving
- Characterization of materials
- Uncertainty is high
- Identify and prioritize knowledge gaps

Known Unknowns Unknown Unknowns

CEA Process

Identify the question(s)

- Sources
- ► Life cycle stages, fate & transport, matrices, exposure, effects
- Developed methods and standardized protocols

Obtain diverse perspectives

- ► ODUSD Chemical & Material Risk Management
- NNCO National Nanotechnology Coordination Office
- ► ARMY- ARDEC , Army Institute of Public Health, ERDC
- ▶ Navy- NSWC-IHD
- ▶ Air Force- Air Force Laboratory Human Effectiveness Directorate

Use collective judgment method

Adapted from Davis, 2007

CEA: Life Cycle Stages of nano-Al

Life Cycle Stages: Feedstocks & Manufacturing

Top-Down Synthesis

➤ Milling technique (micron-sized Al particles to nanosized powder)

➤ Vaporization technique (Al rods)

Bottom-up synthesis

≻Solution technique

Both

- **≻Plasma synthesis**
- ➤ ARDEC Picatinney Arsenal Nanotechnology Research Center: Radiofrequency (RF) Induction Plasma reactor (Tekna Plasma Systems) pilot plant

Synthesis Challenges: (1) Particle Sizes, (2) Nanoparticle oxidation

<u>Life Cycle Stages</u> – Distribution and Storage

Feedstocks

Manufacture

Distribution

Storage

Use

Disposal

- •Use of nano-aluminum still in the R&D phase
- Stored under inert atmosphere
- •Aggregates are stored at the facility (still have research value),
- Current synthesis of 200g batches for rapid characterization
- •Stability studies indicate no loss in surface area, however a 20% loss in reactivity due to oxygen diffusion

Life Cycle Stages – Use and Disposal

Potential Uses:

- Propellant
- Explosives
- Munitions primers
- Diesel fuel additive

Life Cycle

Feedstocks

Manufacture

Stages

Potential Disposal Routes:

- Traditional landfills
- Wastewater streams
- Hazardous waste storage

Environmental Pathways of nano-Al

Most Likely Exposure Pathways: Air > Soil > Water

CEA: Fate and Transport of nano-Al

Carney et al. (2006)

Carney et al. (2009)

BUILDING STRONG®

Carney et al. (2006)

CEA: Simulated Explosion of CuO Nanorods and Al NPs

- Explosion resulted in sintered particles and nanosized metal particles
- •Residue: 36.5% Al, 58% Cu

CEA: Simulated Explosion of CuO Nanorods and Al NPs

Cu-KA

160,000x magnification

CEA: Fate and Transport of nano-Al

- Al is rapidly oxidized
 - Oxide coat stabilizes the particle and particle shape
- Particle size greatly influences oxidation potential
- Nano-Al/Al₂O₃ interacts with soil ,water , and strongly with humic acids
- Highly agglomerates affects mobility in soil
- Surface charge changes with leachate alters mobility
- •Micron-sized Al₂O₃ has greater sorption than nano-Al₂O₃

Exposure-Dose of nano-Al

10% 50% **75%**

Exposure-Dose % content of nano-Al

Plot of extinction values for Al triangular prisms (Faber et al. 2008)

Exposure-Dose of nano-Al

Most likely routes of nano-Al/Al₂O₃ exposure:

Inhalation > Internal (mucociliary escalator) > Dermal > Internal (oral)

ARDEC-NIOSH collaborative framework "Nanopowder Synthesis & Associated Safety Precautions at ARDEC"

TWA and other occupational exposure values?

R&D laboratory evaluations of occupational exposures?

Evaluate exposures in the field and firing ranges

Effects of nano-Al

Problems with Effects of nano-Al

- Nano-Al/Al₂O₃ is highly agglomerated
- •Is aged nano-Al the same as nano-Al₂O₃?

Effects of nano-Al: Ecosystems

Most Likely Exposure Pathways: Air > Soil > Water

- > Aquatic
 - Less toxic to daphnids and algae than other NPs
 - More toxic to juvenile zebrafish than adults
 - Causes atherothrombotic events in zebrafish
 - Produces differential effects on benthic organisms
- > Terrestrial
 - Mildly toxic to bacteria
 - Mildly phytotoxic (root growth inhibition) due to ROS
 - Soil nematodes and earthworm reproduction negatively affected, yet actively avoid nano-Al spiked soils

Effects of nano-Al: Human Health

1.Inhalation

- •Nano-Al, not Al₂O₃, negatively affects alveolar macrophages function
- Suppressed macrophage ability to fight respiratory pathogen MRSA
- No in vivo studies yet

2.Dermal

- Dermal contact may increase proinflammation, dermatitis
- Accumulation likely in epidermis, but not dermis & no bioaccumulation

3.Internal

- Cell damage in several in vitro studies using internal organ cultures
- Neurotoxicity (blood brain barrier disruption) and
- Genotoxicity in vivo and in vitro, secondary to ROS (?)

CEA: Lessons Learned with fuel oxygenate MBTE

- (1) A multimedia environmental perspective built on a product life cycle framework is essential.
- (2) A by-product may be more problematic than the primary substance.
- (3) Human health is not the only issue of concern.
- (4) Use caution in generalizing from limited empirical data.
- (5) The public deserves to be well-informed.
- (6) Everything has trade-offs: some may be acceptable, some may not.
- (7) Even with limited information, technical experts may be able to anticipate risks.
- (8) An adaptive risk management strategy is critically important.

Adapted from Davis, 2007

Preliminary Conclusions

➤ Potential sources and releases of nano-Al to the environment that will likely occur through air, water, or soil exposures through the production, use, and disposal of nano-Al propellants, igniters, and additives.

➤ However, these preliminary findings are the result of an assessment from the R&D community.

➤ Data collection is still required to gain a better understanding of the future deployment and handling of nano-Al as a military technology.

Data Gaps/ Moving Forward

- Life Cycle: Further collaboration required within the R&D community such ARDEC, NSWC-IHD, and AFRL to discuss life cycle phases.
- Environmental Pathways: (1) combustion analyses, (2) atmospheric deposition field studies, (2) atmospheric modeling of firing ranges
- Exposure: In vivo exposure to biota and humans is perhaps the biggest area of uncertainty in this entire nano-AI CEA.
- Environmental Fate: (1) environmental characteristics (e.g., temperature, weather) effects on nano-Al aging, (2) field studies with military materiel (munitions, propellants, etc.)
- Effects: Data needs to reflect of actual particle sizes, i.e. nanoparticle agglomerates vs. monodispersed nanoparticles.

NanoExPERT

Categories:

- **≻**Materials
- > Media
- > Physical, Chemical, Model, and Caculations
- **≻Biological Effects**
- > Hazard

ERDC Environmental Nanotechnology Team

http://el.erdc.usace.army.mil/nano/index.html

Jeff Steevens-Senior Scientist, technical lead

Chemistry: Anthony Bednar, Aimee Poda, Fran Hill, Rashid Mahbubur,

Chris Griggs

Soil Science: Mark Chappell, Jen

Seiter

Material Science: Chuck Weiss

Biology: Al Kennedy, David Johnson,

Jacob Stanley, Cynthia Banks

Computer Science: Amy Bednar

- •Critical review and advising from Dr. Mike Davis, Senior Science Advisor, U.S. EPA and Dr. Thomas Seager, Professor, University of Arizona
- •This research effort was funded by an ERDC Center Directed Research Project, "Comprehensive environmental assessment for nano-enabled defense and deal use capacities," Dr. Jeff Holland, ERDC Director.
- •Permission was granted by the Chief of Engineers to present this presentation.
- •Opinions expressed during this presentation are those of the author and not of the USACE or Army.

